SIPLAST LIGHTWEIGHT INSULATING CONCRETE

THE ZIC SYSTEM

Siplast Lightweight Insulating Concrete Systems

Siplast Lightweight Insulating Concretes are composite systems that combine the unique properties of lightweight insulating concrete and Insulperm premium expanded polystyrene foam insulation board. The polystyrene insulation board can be installed in thicknesses necessary for high insulation values and in stair-step fashion, facilitating prompt drainage of water from the roof surface.

By design, Siplast Lightweight Insulating Concrete Systems encapsulate the insulation board in insulating concrete. All constructions provide superior fire protection and wind resistance, resist air infiltration, and fully bond to the substrate, resulting in a stable, monolithic insulation system built for the long term.

The ZIC System Concept

For many years, the ZIC System has been successfully installed over galvanized slotted corrugated metal deck where insulation and slope are required in a fully fire rated construction. Specific insulation values, from low to very high, can be achieved to meet design requirements simply through the adjustment of Insulperm thicknesses. Because Insulperm can be installed in stair-step fashion, slope-to-drain is much easier to achieve than creating slope with complicated tapered rigid board insulation systems. Given its inherent fire resistant quality, ZIC remains an economical alternative to the expensive process of fireproofing the deck’s underside necessary for other insulation systems to meet the same fire ratings achieved by the ZIC system.

ZIC

ZIC is a 1:6 ratio of Portland cement volume to ZIC Aggregate volume. The standard 1:6 (cement to aggregate ratio) system requires a minimum 2-inch (51 mm) thickness of ZIC over the top of the slotted metal decking or Insulperm when used. ZIC has a minimum dry density of 22 pcf (352 kg/m³) and develops a minimum compressive strength of 125 psi (861.85 kPa).

Insulperm Insulation

Insulperm is a patented, premium quality nominal 1 pcf (16 kg/m³) density expanded polystyrene insulation board. It serves as the primary insulator and, when used in a stair-stepped configuration, is the base for the system’s slope-to-drain capability.

Insulperm insulation is supplied in 2-foot by 4-foot (.61 m x 1.22 m) boards in thicknesses from 1-inch (25 mm). This product is configured to give the system composite strength and ensure release of moisture vapor. Insulperm is a lightweight expanded polystyrene insulation board; it adds little dead load to the assembly.

Fire Rated Construction

The ZIC System has excellent fire resistance properties and provides an economical method of creating insulated fire rated systems in steel deck construction. ZIC is approved by Factory Mutual as a non-combustible rated roof substrate. Combining ZIC with up to a 12-inch (305 mm) thickness of Insulperm insulation board over slotted galvanized steel decks meets the requirements of a Factory Mutual Class 1 fire rating. ZIC is listed by Underwriters Laboratories as fire classified. Designs published in the Underwriters Laboratories Fire Resistance Directory include:

<table>
<thead>
<tr>
<th>Metal Deck Roof Assemble Design No.</th>
<th>Hourly Rating</th>
<th>Concrete Deck Roof Assembly Design No.</th>
<th>Hourly Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>P214</td>
<td>1</td>
<td>P708</td>
<td>2</td>
</tr>
<tr>
<td>P215</td>
<td>2</td>
<td>P810</td>
<td>2</td>
</tr>
<tr>
<td>P216</td>
<td>1</td>
<td>P905</td>
<td>2</td>
</tr>
<tr>
<td>P241</td>
<td>2</td>
<td>P910</td>
<td>2</td>
</tr>
<tr>
<td>P246</td>
<td>1</td>
<td>P915</td>
<td>2</td>
</tr>
<tr>
<td>P251</td>
<td>2</td>
<td>P916</td>
<td>2</td>
</tr>
<tr>
<td>P255</td>
<td>1</td>
<td>D708</td>
<td>3</td>
</tr>
<tr>
<td>P261</td>
<td>1</td>
<td>L602</td>
<td>3</td>
</tr>
<tr>
<td>P264</td>
<td>1</td>
<td>L816</td>
<td>3</td>
</tr>
<tr>
<td>P410</td>
<td>2</td>
<td>L823</td>
<td>3</td>
</tr>
<tr>
<td>P509</td>
<td>1</td>
<td>D825</td>
<td>3</td>
</tr>
<tr>
<td>P513</td>
<td>2</td>
<td>L915</td>
<td>3</td>
</tr>
<tr>
<td>P508</td>
<td>2</td>
<td>L827</td>
<td>3</td>
</tr>
<tr>
<td>P519</td>
<td>1</td>
<td>L824</td>
<td>3</td>
</tr>
<tr>
<td>P921</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P924</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P925</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wind Rated Construction

Combining ZIC with up to a 12-inch (305 mm) thickness of Insulperm insulation board over slotted galvanized steel decks meets the requirements of Factory Mutual windstorm classifications. Underwriters Laboratories has approved the ZIC System in Construction No. 110 for Class 90 windstorm construction. In each approved assembly, the roofing membrane was attached with Zono-tite base sheet fasteners.

Seismic and Diaphragm Design

The ZIC System may be designed and constructed to form an extremely effective and economical earthquake-resistant and wind-resistant system. ZIC System designs over corrugated metal decks resist lateral loads caused by seismic motion or wind forces. Extensive testing has established a wide and comprehensive range of working shear values for these deck systems, and code approvals exist in certain areas where seismic and diaphragm design requirements are prevalent. The diaphragm design values and procedures may be found in the Siplast Lightweight Insulating Concrete Systems binder.

Approvals and Guide References

Underwriters Laboratories Listed
Factory Mutual Approved
ICBO Report Nos. 3260, 2078
City of New York Board of Standards and Appeals – Calendar No. 160-74-SM
ICC Evaluation Service, Inc. Report Number 2309
Metro-Dade Product Control No. 07-0122.06 and 07-1211.05
City of Los Angeles Department of Building and Safety Research Report 24389
Other local and regional approvals available.
Insulation Value Table for Concrete and Reroofing Substrate Designs

(2 inches of ZIC 1:6 mix design, and optional thicknesses of Insulperm over steel decking.)

<table>
<thead>
<tr>
<th>Thickness of Insulperm</th>
<th>Weight of Metal, Insulperm & ZIC Concrete (PSF)</th>
<th>U-Factor* No Ceiling Heat Flow</th>
<th>Weight of Metal, Insulperm & ZIC Concrete (PSF)</th>
<th>U-Factor* No Ceiling Heat Flow</th>
<th>R-Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up Down</td>
<td></td>
<td>Up Down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0°</td>
<td>5.7 0.213 0.197 3.6</td>
<td>6.3 0.205 0.189 3.8</td>
<td>6.4 0.208 0.192 3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1°</td>
<td>6.1 0.113 0.109 7.7</td>
<td>6.6 0.111 0.106 7.9</td>
<td>6.8 0.111 0.107 7.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1/2°</td>
<td>6.2 0.093 0.090 9.7</td>
<td>6.7 0.091 0.088 9.9</td>
<td>6.8 0.091 0.088 9.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2°</td>
<td>6.2 0.079 0.076 11.0</td>
<td>6.8 0.077 0.075 11.8</td>
<td>6.9 0.078 0.075 11.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1/2°</td>
<td>6.3 0.068 0.067 13.5</td>
<td>6.8 0.067 0.065 13.8</td>
<td>7.0 0.068 0.066 13.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3°</td>
<td>6.3 0.060 0.059 15.4</td>
<td>6.9 0.059 0.058 15.7</td>
<td>7.0 0.060 0.058 15.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 1/2°</td>
<td>6.4 0.054 0.053 17.4</td>
<td>7.0 0.053 0.052 17.6</td>
<td>7.1 0.054 0.052 17.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4°</td>
<td>6.4 0.049 0.048 19.3</td>
<td>7.0 0.048 0.047 19.5</td>
<td>7.2 0.049 0.048 19.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5°</td>
<td>6.6 0.041 0.041 21.3</td>
<td>7.1 0.041 0.040 23.4</td>
<td>7.3 0.041 0.040 23.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6°</td>
<td>6.6 0.036 0.035 26.9</td>
<td>7.3 0.035 0.034 27.2</td>
<td>7.4 0.035 0.035 27.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 1/2°</td>
<td>6.9 0.031 0.031 30.8</td>
<td>7.4 0.031 0.031 31.0</td>
<td>7.5 0.031 0.031 31.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7°</td>
<td>7.0 0.028 0.028 34.6</td>
<td>7.5 0.028 0.027 34.9</td>
<td>7.7 0.028 0.028 34.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9°</td>
<td>7.1 0.025 0.025 38.4</td>
<td>7.7 0.025 0.025 38.7</td>
<td>7.8 0.025 0.025 38.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10°</td>
<td>7.3 0.023 0.023 42.2</td>
<td>7.8 0.023 0.022 42.5</td>
<td>7.9 0.023 0.022 42.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11°</td>
<td>7.4 0.021 0.021 46.0</td>
<td>7.9 0.021 0.021 46.3</td>
<td>8.1 0.021 0.021 46.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12°</td>
<td>7.5 0.020 0.019 49.9</td>
<td>8.1 0.020 0.019 50.1</td>
<td>8.2 0.020 0.020 50.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*NOTE: The above item 6 and 7 are applicable when a single source roof system guarantee covering the lightweight insulating concrete system and roof membrane system is required.

1. Submit a letter from the proposed light-weight insulating concrete system supplier confirming that the Contractor is approved to install the proposed lightweight insulating concrete system.

Notes:
1. ZIC properties are based on the material at minimum dry density. The thermal conductivity data is derived from independent testing of materials in accordance with ASTM Specification C 177. Thermal conductivity of roof insulation components is based on 40°F mean temperature. U-factors are based on series-parallel heat flow calculations defined in the ASHRAE Handbook of Fundamentals and are shown in constant thickness insulation. All values shown are intended only as guidelines. Insulation performance for all materials and/or systems is affected by building environment, installation and design procedures that may cause variations from calculated values.
2. A roof membrane will add the following typical weights to the system weight listed above:
 - Modulite Blumen: 2 pounds per sf
 - 4 ply built-up roof with gravel: 6 pounds per sf
 - Mechanically fastened single ply: 0.5 pounds per sf

When using the ZIC System in re-cover or reroofing applications, Siplast strongly recommends that a registered structural engineer evaluate the design and verify that the existing structure is capable of supporting the added weight of the new assembly.

ZIC PART 1: GENERAL

1.01 SECTION INCLUDES:
- Lightweight Insulating Concrete Application to Prepared Substrate

1.02 RELATED SECTIONS
- Section [— — —] - Testing Laboratory Services
- Section [— — —] - Rough Carpentry
- Section [— — —] - Roof Deck
- Section [— — —] - Roofing
- Section [— — —] - Sheet Metal Flashing and Trim
- Section [— — —] - Sprayed Fire Protection

1.03 REFERENCE STANDARDS
References in these specifications to standards, test methods, and codes are implied to mean the latest edition of each such standard adopted. The following is an abbreviated list of associations, institutions, and societies that may be used as references throughout these specifications.
- **ASTM**
 - American Society for Testing and Materials
 - Philadelphia, PA
- **FM**
 - Factory Mutual Engineering and Research
 - Norwood, MA
- **UL**
 - Underwriters Laboratories
 - Northbrook, IL

1.04 SUBMITTALS
All submittals that do not conform to the following requirements will be rejected.

A. Submittal of Equals: Submit lightweight insulating concrete systems to be considered as equals to the specified roof system no less than 10 days prior to bid date. Primary light-weight insulating concrete systems that have been reviewed and accepted as equals to the specified system will be listed in an addendum prior to bid date; only then will equals be accepted at bidding. Submittals shall include the following:

1. Submit manufacturer’s instructions for proper placement of the proposed light-weight insulating concrete roof insulation system.
2. Submit documentation confirming compliance with FM 1-[— — —] Windstorm Resistance Classification utilizing the specific roof membrane system proposed for use on this project.
3. Submit a letter from the supplier of the proposed lightweight insulating concrete system confirming that the expanded polyurethane used as a component in the lightweight insulating concrete system is to be furnished by the supplier of the proposed lightweight insulating concrete system.
4. Submit shop drawings including a roof plan, roof slopes, and thickness of insulation.
5. Submit a sample copy of the warranty covering the proposed lightweight insulating concrete system. *NOTE: The above item is applicable when a performance warranty for the lightweight concrete is required.
6. Submit a sample copy of the roof system guarantee covering the proposed lightweight insulating concrete system and roof membrane system.
7. Submit a letter from the roof membrane manufacturer confirming the intention to issue the roof system guarantee covering the proposed lightweight insulating concrete system and roof membrane system at project completion.

A. Acceptable Contractor: The contractor must be certified in writing prior to bid by the supplier to install the proposed lightweight insulating concrete system.

B. Agency Approvals: The proposed light-weight insulating concrete system shall conform to the following requirements. No other testing agency approvals will be accepted.

1. **Underwriters Laboratories:** Tested by Underwriters Laboratories in accordance with the procedures of ASTM E 119 and listed in the most recent Underwriters Laboratories Fire Resistance Directory. Lightweight insulating concrete roof insulation components are defined by Underwriters Laboratories under sections CC VW for foamed plastic and CJZZ for floor or roof - topping mixture in the latest edition of the Underwriters Laboratories Fire Resistance Directory.

2. **Factory Mutual:** Tested by Factory Mutual Research and listed in the most recent Factory Mutual Approval Guide as non-combustible or Class 1, and for 1-[— — —] windstorm classification utilizing the specific roof membrane system proposed for use on this project.

1.06 PRODUCT DELIVERY, STORAGE AND HANDLING

A. Delivery: Deliver materials in the supplier’s original unopened packages, fully identified as to manufacturer, brand or other identifying data and bearing the proper Underwriters Laboratories label.

B. Storage: Store bagged concrete aggregate products in a dry location until ready for application. Expanded polyurethane board should not be stored in areas of standing water prior to application but can be exposed to rainwater.
PART 2: PRODUCTS

2.01 MATERIALS
A. Acceptable Manufacturer: Provide a lightweight insulating concrete roof insulation system incorporating vermiculite aggregate and expanded polystyrene board supplied by a single manufacturer.

2.02 SYSTEM DESCRIPTION
A. Lightweight Concrete System
Description: Provide materials used in the lightweight concrete roof insulation system conforming to the following.

1. Galvanized Metal Deck: Corrugated steel decking incorporating a pre-applied galvanized coating conforming to a minimum Class G-60 as specified in ASTM A 525 and having slots in the flutes equal to a minimum of 0.75% of the area. Refer to general notes on the structural drawings and Specification Section 05300 for metal deck specifications and attachment requirements.

2. Portland Cement: Portland cement conforming to Type I, II, or III as defined by ASTM C 150.

4. Expanded Polystyrene Insulation Board: Expanded polystyrene (EPS) insulation board having a nominal density of 1 pcf (16 kg/m²) defined as Type I by ASTM C 578 and containing approximately 3% open area. Each bundle of board shall be delivered to the job site with clear identification as to manufacturer and shall carry the Factory Mutual approval label and the Underwriter’s Laboratories Classified label on each bundle.

5. Water: Potable water that is clean and free of deleterious amounts of acid, alkali and organic materials.

2.03 MIX DESIGN
A. Density: Mix Portland cement and vermiculite concrete aggregate in 1:6 volume ratio with water to achieve a wet density ranging from 44 to 60pcf (705 to 961 kg/m³), resulting in a minimum dry density of 22pcf (353 kg/m³) and minimum compressive strength of 125 psi (862 kPa).

NOTE: When the lightweight insulating concrete system is designed as a diaphragm to resist seismic or wind loads, increase the minimum compressive strength to 140 psi (965 kPa).

PART 2: PRODUCTS

2.01 MATERIALS
A. Acceptable Manufacturer: Provide a lightweight insulating concrete roof insulation system incorporating vermiculite aggregate and expanded polystyrene board supplied by a single manufacturer.

2.02 SYSTEM DESCRIPTION
A. Lightweight Concrete System
Description: Provide materials used in the lightweight concrete roof insulation system conforming to the following.

1. Galvanized Metal Deck: Corrugated steel decking incorporating a pre-applied galvanized coating conforming to a minimum Class G-60 as specified in ASTM A 525 and having slots in the flutes equal to a minimum of 0.75% of the area. Refer to general notes on the structural drawings and Specification Section 05300 for metal deck specifications and attachment requirements.

2. Portland Cement: Portland cement conforming to Type I, II, or III as defined by ASTM C 150.

4. Expanded Polystyrene Insulation Board: Expanded polystyrene (EPS) insulation board having a nominal density of 1 pcf (16 kg/m²) defined as Type I by ASTM C 578 and containing approximately 3% open area. Each bundle of board shall be delivered to the job site with clear identification as to manufacturer and shall carry the Factory Mutual approval label and the Underwriter’s Laboratories Classified label on each bundle.

5. Water: Potable water that is clean and free of deleterious amounts of acid, alkali and organic materials.

2.03 MIX DESIGN
A. Density: Mix Portland cement and vermiculite concrete aggregate in 1:6 volume ratio with water to achieve a wet density ranging from 44 to 60pcf (705 to 961 kg/m³), resulting in a minimum dry density of 22pcf (353 kg/m³) and minimum compressive strength of 125 psi (862 kPa).

NOTE: When the lightweight insulating concrete system is designed as a diaphragm to resist seismic or wind loads, increase the minimum compressive strength to 140 psi (965 kPa).
PART 3: EXECUTION

3.01 EXAMINATION

A. General: Ensure that all surfaces to receive lightweight insulating concrete are free of oil, grease, paints/primers, loose mill scale, dirt, or other foreign substances. Where necessary, cleaning or other corrections of surfaces to receive lightweight insulating concrete is the responsibility of the party causing the unacceptable condition of the substrate.

B. Substrate Acceptance: With the general contractor present, examine surfaces to receive the roof insulation system and determine that the surfaces are acceptable prior to placement of the lightweight insulating concrete system.

3.02 PREPARATION

A. General: Remove water or any other substance that would interfere with bonding of the lightweight concrete system.

3.03 APPLICATION

A. General: Provide equipment and application procedures conforming to the material supplier’s application instructions.

B. Applications Not Incorporating Expanded Polystyrene Panels: Place lightweight insulating concrete in a 2-inch (51 mm) minimum thickness over the top corrugation of metal decks, over the surface of a prepared substrate, or over the existing membrane surface in re-cover applications.

C. Applications Incorporating Expanded Polystyrene Panels: When the specified expanded polystyrene insulation panels are to be incorporated into the lightweight insulating concrete system, fill the flutes and place a 1/8-inch (3 mm) minimum slurry over the top corrugation of metal deck before embedding the expanded polystyrene insulation panels. Place the thickness of expanded polystyrene insulation panels shown in the approved shop drawings within 30 minutes of applying the insulating concrete slurry coat to the substrate. When metal deck substrates are used, place the expanded polystyrene insulation panels in a brick-like pattern. The maximum allowable panel step in a stair-step design is 1 inch (25 mm). Fill the holes in the expanded polystyrene insulation panels and place a 2-inch (51 mm) minimum thickness of insulating concrete over top of the expanded polystyrene insulation panels. The preferred method is to apply the insulating concrete top fill the same day. Other regulatory or jobsite sequencing issues may require application of the top fill the next day.

D. Thermal Resistance: Install the specified lightweight insulating concrete system to provide for an [average/minimum] thermal value of R [— — —] or as shown on the architectural details/drawings.

E. Slope: Install the specified lightweight insulating concrete system to provide for a minimum positive roof slope of [— — —] inch per foot (— — — %). See the structural drawings for slope provided by the roof framing system.

3.04 FIELD QUALITY CONTROL

A. Protection: Avoid roof-top traffic over the roof insulation system until one can walk over the surface without creating surface damage.

B. Compressive Strength Testing: The Architect has the option to select an independent testing laboratory to randomly sample the top placement of insulating concrete to verify the thickness and density, and to secure and test compressive strength cylinders in accordance with ASTM C 495. The Owner will be responsible for the cost and engagement of the independent testing laboratory services. * NOTE: The above testing may be necessary when the lightweight insulating concrete system is designed as a diaphragm to resist seismic or wind loads.

C. Application Monitoring: Monitor the thickness and wet density of the lightweight insulating concrete at the time of placement to determine conformance to the manufacturer’s requirements. Monitor the placement of proper thickness of polystyrene insulation board in accordance with the contract documents.

D. Fastener Withdrawal Testing: Conduct a base ply fastener pull test 3 or more days following the application of the lightweight insulating concrete to ensure a minimum withdrawal resistance of 40 pounds (18 kg) per fastener.

3.05 PATCHING

A. Patching: Perform all patching and repairing of insulating concrete using Zono-Patch or other materials approved by the lightweight insulating concrete supplier.